Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.

Identifieur interne : 000099 ( Main/Exploration ); précédent : 000098; suivant : 000100

Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.

Auteurs : M Nica A. Mechoud [Espagne] ; Nuria Pujol-Carrion [Espagne] ; Sandra Montella-Manuel [Espagne] ; Maria Angeles De La Torre-Ruiz [Autriche]

Source :

RBID : pubmed:32414791

Descripteurs français

English descriptors

Abstract

The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the Saccharomyces cerevisiae Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with GUA1 (S. cerevisiae GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.IMPORTANCESaccharomyces cerevisiae is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.

DOI: 10.1128/AEM.00221-20
PubMed: 32414791
PubMed Central: PMC7357468


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.</title>
<author>
<name sortKey="Mechoud, M Nica A" sort="Mechoud, M Nica A" uniqKey="Mechoud M" first="M Nica A" last="Mechoud">M Nica A. Mechoud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montella Manuel, Sandra" sort="Montella Manuel, Sandra" uniqKey="Montella Manuel S" first="Sandra" last="Montella-Manuel">Sandra Montella-Manuel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain madelatorre@cmb.udl.cat.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32414791</idno>
<idno type="pmid">32414791</idno>
<idno type="doi">10.1128/AEM.00221-20</idno>
<idno type="pmc">PMC7357468</idno>
<idno type="wicri:Area/Main/Corpus">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000088</idno>
<idno type="wicri:Area/Main/Curation">000088</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000088</idno>
<idno type="wicri:Area/Main/Exploration">000088</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.</title>
<author>
<name sortKey="Mechoud, M Nica A" sort="Mechoud, M Nica A" uniqKey="Mechoud M" first="M Nica A" last="Mechoud">M Nica A. Mechoud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Montella Manuel, Sandra" sort="Montella Manuel, Sandra" uniqKey="Montella Manuel S" first="Sandra" last="Montella-Manuel">Sandra Montella-Manuel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain madelatorre@cmb.udl.cat.</nlm:affiliation>
<country wicri:rule="url">Autriche</country>
<wicri:regionArea>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carbon-Nitrogen Ligases (genetics)</term>
<term>Carbon-Nitrogen Ligases (metabolism)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Carbon-nitrogen ligases (génétique)</term>
<term>Carbon-nitrogen ligases (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protein-Serine-Threonine Kinases (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carbon-Nitrogen Ligases</term>
<term>Carrier Proteins</term>
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon-Nitrogen Ligases</term>
<term>Carrier Proteins</term>
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Carbon-nitrogen ligases</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbon-nitrogen ligases</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation</term>
<term>Gene Library</term>
<term>Humans</term>
<term>Mice</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Banque de gènes</term>
<term>Humains</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the
<i>Saccharomyces cerevisiae</i>
Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with
<i>GUA1</i>
(
<i>S. cerevisiae</i>
GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.
<b>IMPORTANCE</b>
<i>Saccharomyces cerevisiae</i>
is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32414791</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00221-20</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00221-20</ELocationID>
<Abstract>
<AbstractText>The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the
<i>Saccharomyces cerevisiae</i>
Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with
<i>GUA1</i>
(
<i>S. cerevisiae</i>
GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.
<b>IMPORTANCE</b>
<i>Saccharomyces cerevisiae</i>
is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.</AbstractText>
<CopyrightInformation>Copyright © 2020 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Mechoud</LastName>
<ForeName>Mónica A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Pujol-Carrion</LastName>
<ForeName>Nuria</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Montella-Manuel</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de la Torre-Ruiz</LastName>
<ForeName>Maria Angeles</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, Spain madelatorre@cmb.udl.cat.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C404105">GLRX3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C512912">GCN2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.-</RegistryNumber>
<NameOfSubstance UI="D019731">Carbon-Nitrogen Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.5.2</RegistryNumber>
<NameOfSubstance UI="C020828">GMP synthase (glutamine-hydrolyzing)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019731" MajorTopicYN="N">Carbon-Nitrogen Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">GCN2</Keyword>
<Keyword MajorTopicYN="Y">GMP synthase</Keyword>
<Keyword MajorTopicYN="Y">Glrx3</Keyword>
<Keyword MajorTopicYN="Y">Grx3</Keyword>
<Keyword MajorTopicYN="Y">Grx4</Keyword>
<Keyword MajorTopicYN="Y">PICOT</Keyword>
<Keyword MajorTopicYN="Y">aging</Keyword>
<Keyword MajorTopicYN="Y">chronological life span</Keyword>
<Keyword MajorTopicYN="Y">glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">iron</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32414791</ArticleId>
<ArticleId IdType="pii">AEM.00221-20</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00221-20</ArticleId>
<ArticleId IdType="pmc">PMC7357468</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12764-12771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;101:181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6310321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2010 Mar;10(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2017 Oct 24;4(11):368-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29167799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jan;187(1):105-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jul;21(13):4347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11390663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Dec;21(16):1359-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):5099-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2017 Feb;103:107-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28007574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Nov 20;27(15):1235-1251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28537421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Dec 1;19(23):6622-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 May 22;348(6237):921-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2008 Sep;64(Pt 9):927-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):27636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2016 Oct;17(10):1374-1395</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27629041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2018 Apr 30;475(8):1523-1534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29626156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2019 Jun;65(3):717-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4474-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1986 Oct;68(4):803-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3530347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Jun;24(12):1895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23615448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Oct;183(2):529-38, 1SI-7SI</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19635936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 May 25;13(5):e1006779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28542158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Jul;97(1):93-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2019 May 22;2019:5730532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31249645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Sep;1843(9):1948-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24732012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Dec;76(23):7826-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1994 Feb 11;139(1):127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8112582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 27;10(3):e0122382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25816288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Apr 2;394(2):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20226171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr Cancer. 2009;61(4):415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Feb;11(2):113-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20094052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Sep 25;465(3):620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2005 Jan 15;202(2):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Feb 28;51(8):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Oct 21;291(43):22344-22356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519415</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Mechoud, M Nica A" sort="Mechoud, M Nica A" uniqKey="Mechoud M" first="M Nica A" last="Mechoud">M Nica A. Mechoud</name>
</noRegion>
<name sortKey="Montella Manuel, Sandra" sort="Montella Manuel, Sandra" uniqKey="Montella Manuel S" first="Sandra" last="Montella-Manuel">Sandra Montella-Manuel</name>
<name sortKey="Pujol Carrion, Nuria" sort="Pujol Carrion, Nuria" uniqKey="Pujol Carrion N" first="Nuria" last="Pujol-Carrion">Nuria Pujol-Carrion</name>
</country>
<country name="Autriche">
<noRegion>
<name sortKey="De La Torre Ruiz, Maria Angeles" sort="De La Torre Ruiz, Maria Angeles" uniqKey="De La Torre Ruiz M" first="Maria Angeles" last="De La Torre-Ruiz">Maria Angeles De La Torre-Ruiz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000099 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000099 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32414791
   |texte=   Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32414791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020